BRAIN-MACHINE INTERFACES FOR PEOPLE WITH SPINAL CORD INJURY

Jennifer Collinger, PhD
University of Pittsburgh
VA Pittsburgh Healthcare System

May 11, 2012
Motivation

- People with severe disabilities may have limited means to communicate or interact with their environment
- Traditional assistive technologies often require some amount of dexterity to operate
- A brain-machine interface (BMI) will establish a direct link between the brain and an external device
 - Potential for high degree-of-freedom, intuitive control
What is a BMI?

- Multi-channel neural recording
- Signal processing and feature extraction
- Decoding movement or intention
- Control signal for an external device

Feedback
Who are our end users?

- People with mobility or communication-related impairments whose needs are not met by traditional assistive technology
- BMI can benefit from user-centered design
 - Recording modality
 - Risk/benefit tradeoffs
 - Type of terminal device(s)
What do they want?

Collinger et al., in review
Top functional priorities

![Bar chart showing percentage of participants who rate each function as 1st or 2nd priority for tetraplegia and paraplegia. Functions include Arm/Hand Function, Upper Body/Trunk Strength, Walking, Bladder/Bowel Function, Sexual Function, Elimination of Dysreflexia, Elimination of Chronic Pain, and Normal Sensation.]
BMI familiarity and preferences

- How many people had heard of BMI technology?
 - 75% of individuals with tetraplegia
 - 53% of individuals with paraplegia

- How many would be interested in using a BMI to assist with daily activities?
 - 86% of individuals with tetraplegia
 - 81% of individuals with paraplegia
BMI-controlled assistive technology

![Bar chart showing percentage of participants who rate BCI technologies as very helpful for different conditions and technologies.](chart.png)

- Computer
- Wheelchair
- FES for hand grasp
- FES for lower body
- FES for bladder/bowel
- Robotic arm assistant
BMI design characteristics

- Independent operation was most important
- Training time was the least important
 - 51% would come to a lab/clinic as often as needed
 - 23% would come 2-3 times per week
 - 21% would come once per week
 - 1 person not willing to travel for training
- 70% rated non-invasiveness as very important
- More than half would “definitely” or “very likely” consider having surgery to implant BMI electrodes
Priorities for users with ALS

- Most important features of a BMI
 - Accuracy, set-up simplicity, standby mode reliability, available functions

- EEG vs. implanted electrodes
 - 84% accept electrode cap
 - 72% accept surgical implant (outpatient)
 - 41% accept surgical implant (short hospital stay)

- BMI-controlled assistive technologies
 - Power wheelchair and robot arm control trended towards a more significant interest

Huggins et al. 2011
Neural Signal Acquisition Methods

SU: Single-unit recording
ECoG: Electrocorticography
EEG: Electroencephalography
ECoG studies in epilepsy patients

IRB# PRO08020144
Modulation by finger movement

Spatial pattern of frequency response (60-120 Hz) during movement

Kinematics:
PIP Joint Angle

Time-Frequency Response:
Channel 11

Offline Decoding Accuracy: 73%

Wang et al. 2009
Grasping: execution & observation

Fabbri-Destro & Rizzolatti 2008
Congruent neural activity
Online control of hand grasping

Vinjamuri et al. 2009
1-D control demonstration
Increased depth of modulation with BMI video game training
Transitioning to spinal cord injury

- Our research group (and others) have conducted ECoG studies in individuals with epilepsy, but there are limitations.
- Current BMI work in individuals with disabilities includes non-invasive methods and BrainGate.
- We proposed an ECoG-based study to take advantage of FDA-approved technology and allows for longer term testing in individuals with motor impairments.
 - Will guide the development of a fully-implantable, permanent BMI system.
Objectives

- Demonstrate successful control of an ECoG BMI
 - Derive the relationship between intended action and neural activity recorded with ECoG
 - Demonstrate successful control of a computer cursor and robotic arm using neural data recorded with an ECoG BMI

- 29 day study in a 30 year old participant, 7 years post-SCI, C4 ASIA A
MicroECoG recording
fMRI-guided implantation
Imagery modulates motor cortex activity after SCI

Hand opening/closing

Elbow flexion/extension
Action observation modulates motor cortex activity after SCI
2D Cursor Control
ECoG signal modulation and 2D cursor trajectories

Channel 4

Average success rate: 87% over 176 trials
3D Cursor Control
3D Control of the MPL
Meet our participant
What’s next?

- Additional degrees of freedom
- Long-term studies
Microelectrode BMI

- Conducted under an IDE
 - Investigate the safety and efficacy of using NeuroPort Arrays for chronic recording of neural activity from the motor cortex of individuals with tetraplegia
 - Demonstrate that individuals with tetraplegia can learn to control external devices with using neural signals recorded with the NeuroPort Arrays
Modular Prosthetic Limb (MPL)

Controlled movements - arm raised
NHP control of a robotic arm
Conclusions

- We are at a point where we can begin long-term studies in persons with disabilities
- Consumers are interested
- There is so much to learn!
 - Engaged users, signal differences, training strategies
- Translation to a clinical product requires additional technological development and clinical data to support safety and efficacy of the BMI systems
Research Support

- Department of Veterans Affairs, Rehabilitation Research and Development (B6789C)
- NIH/NINDS, Grand Challenge on Optimal Cortical Control of DARPA Revolutionizing Upper-Limb Prosthetics (3R01NS050256-05S1)
- Departments of Neurology, Neurological Surgery, and Physical Medicine & Rehabilitation of University of Pittsburgh
- University of Pittsburgh Medical Center (UPMC) and the UPMC Rehabilitation Institute
- Multidisciplinary clinical research scholar program at University of Pittsburgh, NIH KL2 RR024154.
- US Army Telemedicine and Advanced Technology Research Center (TATRC)
- Clinical and Translational Science Institute (CTSI) Translational Tool Pilot Program (TTPP) at the University of Pittsburgh
Acknowledgements

- Wei Wang, MD, PhD
- Michael Boninger, MD
- Andrew Schwartz, PhD
- Douglas Weber, PhD
- Elizabeth Tyler-Kabara, MD, PhD
- Tim Bruns, PhD
- Kenneth Curley, MD
- Robert Gaunt, PhD
- Brian Wodlinger, PhD
- Ramana Vinjamuri, PhD
- Robin Ashmore, PhD
- Stephen Foldes, PhD
- Alan Degenhart, BS
- John Kelly, BS
- John Downey, BS
- Aaron Batista, PhD
- Mandeep Tamber, MD, PhD
- Mark Richardson, MD, PhD
- Gena Ghearing, MD
- Deborah Holder, MD
- Donald Crammond, PhD
- Elke Brown, MD
- Betsy Harchick, BS
- Meel Velliste, PhD
- Angus McMorland, PhD
- Tim Verstynen, PhD
- Dennis Swanson, MS
- Richard Barbara, PhD
- Joe Ricker, PhD
- Dan Moran, PhD
- Ferenc Gyulai, MD
- Anto Bagic, MD, PhD
- JHU Applied Physics Laboratory
- Blackrock Microsystems
- UPMC Clinical Staff
- Study Participants!
Thank you!

Questions?